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A technique using causal Green’s function is proposed for extending and bridging multiple time scales in
molecular dynamics for modeling time-dependent processes at the atomistic level in nanomaterials and other
physical, chemical, and biological systems. The technique is applied to model propagation of a pulse in a
one-dimensional lattice of nonlinear oscillators and ripples in graphene from femtoseconds to microseconds. It
is shown that, at least in the vibration problems, the technique can accelerate the convergence of molecular
dynamics and extend the time scales by eight orders of magnitude.
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Limited time scale1 is a major unsolved problem in mo-
lecular dynamics �MD�,2 which is the most important tool for
modeling of physical, chemical, and biological systems. Ato-
mistic or molecular modeling of material properties and
physical processes has now emerged as a new scientific dis-
cipline because it is a valuable aid and supplement to theo-
retical and experimental studies. The problem is that the con-
vergence requirements limit the size of the time step in MD,
which is, in general, several orders of magnitude smaller
than the time scales of physical interest. For example, in the
field of nanomaterials and disordered solids, the time steps in
MD are limited to a few femtoseconds. On the other hand,
many physical processes of interest such as diffusion, radia-
tion damage, formation and growth of defect clusters, wave
propagation, phonons, thermal conductance, etc. occur at
time scales of nanoseconds to microseconds. Modeling these
processes would require 106–109 time steps, which is a for-
midable task even for modern computers. This has been a
major stumbling block in the science of modeling, and abil-
ity to bridge the time scales has remained a long-sought
goal.1

Here we show that the time scales can be extended by
several orders of magnitude by incorporating causal Green’s
function in MD. We validate our technique by applying it to
calculate pulse propagation in a one-dimensional lattice of
nonlinear oscillators. Further, we illustrate our technique by
modeling propagation of ripples in graphene from femtosec-
onds to microseconds. Ripples3 have an important role in
determining the stability of graphene and are a subject of
strong topical interest. Presently there is no available tech-
nique for modeling a process over such an extended range of
time. Bridging time scales is even more crucial for atomistic
modeling of physical processes in nanomaterials such as
graphene because of the obvious difficulties in experimenta-
tion at nanoscale.

Many efficient techniques4–7 have been proposed for im-
proving the temporal convergence of MD. For a review and
other references see Ref. 1. These techniques are based upon
use of integrators, transformations, and efficient ways of in-
cluding higher-order terms in time. They result into substan-
tial acceleration of MD but are not adequate to bridge the
time scales from femtoseconds to microseconds. Voter et al.1

described an elegant technique to extend MD to several pi-
coseconds using the transition state theory. Our technique is
based upon the simple physical idea that the causal Green’s
function gives the temporal response of a system at all times.

We show that it gives an exact solution of the temporal part
of the MD equations for up to quadratic terms in atomic
displacements in the interatomic potential. Higher-order
terms are then included by iteration. We will refer to our
technique as Green’s function in molecular dynamics
�GFMD�. This technique should be applicable to all physical,
chemical, and biological systems where MD is used.

In certain class of problems in which the atoms vibrate
about an equilibrium site, GFMD gives exact results in the
harmonic approximation. Examples of such class of prob-
lems are phonon transport, thermal conduction etc., in disor-
dered or finite solids and low-dimensional material systems
for which MD has to be used because analytical solutions are
not available even in the harmonic approximation. For non-
linear vibration problems, depending upon the anharmonic-
ity, GFMD can accelerate MD by about 8 orders of magni-
tude, and model processes at microseconds. In other classes
of problems in which the atoms are itinerant, such as diffu-
sion or crystal growth, GFMD can be used iteratively and
should still accelerate MD by a significant amount.

Consider a set of N interacting atoms. We label the atoms
by indices L and L�. We assume a Cartesian frame of refer-
ence and denote the position vector of atom L by r�L� at
t=0. We denote the displacement and velocity of atom L at
time t by u�L , t� and c�L , t�, respectively. As in classical MD,
we need to solve the following equation for u:

mL
�2u��L,t�

�t2 = −
�W

�u��L,t�
, �1�

where mL is the mass of L and W is the total potential energy
of the system. We expand W as a Taylor series in powers of
u, which gives

mL
�2u��L,t�

�t2 = f��L� − �
L��

����L,L��u��L�,t� + �f��L,t� , �2�

where � ,� �=1, . . . ,n� denote the Cartesian components, n is
the number of degrees of freedom for each atom, −f and �
are the Taylor coefficients evaluated at u=0 and �f repre-
sents the cubic and higher terms in the expansion of W. For
notational brevity, we define nN dimensional vectors U�t�,
C�t�, F, and �F�t� whose �L components are �mLu��L , t�,
�mLc��L , t�, �1 / �mL�f��L�, and �1 / �mL��f��L , t�, respec-
tively. We also define an nN�nN matrix � whose �L ,�L�
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elements are ����L ,L��. The formal solution of Eq. �2� in the
operator form is

U�t� = �I
�2

�t2 + D�−1

Feff�t� , �3�

where I is the unit matrix, D=M−1/2�M−1/2, Feff�t�=F
+�F�t�, and M is a diagonal matrix with atomic masses as
its elements.

The inverse operator in Eq. �3� is the Green’s function,
which is defined as a solution of

�I
�2

�t2 + D�G�t − t�� = I��t − t�� , �4�

where G�t� is the causal Green’s function which is 0 for
t�0.8 We take the Laplace transform of Eq. �4� for t�=0.
This gives GL�s�= �s2I+D�−1 where s is the Laplace variable
conjugate to t, and the superscript L over a symbol denotes
its Laplace transform. The solution of Eq. �3�, subject to the
initial conditions on U and its derivative C, is then given by

UL�s� = GL�s�Feff
L �s� + sGL�s�U0 + GL�s�C0. �5�

To obtain the inverse Laplace transform of Eq. �5�, we mul-
tiply its both sides by VT, the transpose of the matrix of
eigenvectors of D. This diagonalizes GL�s� and gives

U�L�s� = GD
L �s�Feff

L��s� + sGD
L �s�U0

� + GD
L �s�C0

�, �6�

where U�L�s�=VTUL�s�, Feff
L��s�=VTFeff

L �s�, U0
�=VTU0, C0

�

=VTC0, and GD
L �s� is a diagonal matrix. Its elements are

�Gd
L�s��ii=1 / �s2+Ei

2�, where Ei
2 is an eigenvalue of D and

i=1,2 , . . . ,nN. The eigenvalues can be real or complex.
As a numerical approximation, we neglect �F in Feff, so

Feff
L��s�=F� /s. Then we can obtain the inverse Laplace trans-

form of Eq. �6� analytically. The final result is U�t�
=VU��t�, where

Ui
��t� = − �Fi

�/Ei
2��cos�Eit� − H�t�� + �C0i

� /Ei�sin�Eit�

+ U0i
� cos�Eit� , �7�

and H�t� is the Heaviside step function.
Equation �7� is an exact solution of Eq. �3� for all values

of t if �F�t�=0. This equation can be used as such for pho-
non or thermal problems in disordered or finite systems
where the harmonic approximation is valid but the problem
cannot be solved analytically due to lack of translational
symmetry. To account for anharmonic effects, we expand W
locally at each time step. We calculate U�t� from Eq. �7� in
steps of t=0 to �t, and keep �t small enough so that �F�t� is
negligible during that time. The maximum value of �t is
determined by the value of �F�t�, which depends upon the
specific problem. This introduces a constraint on �t but is
much less severe than that in conventional MD.

The convergence of this technique is much faster than
MD because of two factors: �i� in the basic MD only the first
term on the right of Eq. �2� is retained, whereas GFMD re-
tains up to quadratic terms in the expansion of W, and �ii� the
temporal equation in MD is integrated numerically from
t=0 to �t, whereas GFMD gives an exact solution of the
temporal equation for up to quadratic terms in atomic dis-

placements in W. The basic MD can be accelerated some-
what by using more refined numerical techniques2 that partly
account for the quadratic terms in W by iteration but the
numerical integration of the temporal part is a severe con-
straint on �t in MD.

Equation �7� requires diagonalization of D which is an
O�N3� calculation. For many systems of practical interest, the
interatomic interaction is short range. In these cases D is
sparse and may be banded. This can reduce the computation
to O�N2� or even O�N�. In many cases, N has to be kept
small �few hundred atoms� for other computational reasons.
In such cases, the time evolution can be conveniently calcu-
lated by diagonalizing D even if D is not sparse or banded.

An alternative to diagonalization is to use an iterative
technique similar to static MD for the space part of Eq. �2�,
which requires O�N� calculation. We assume u�L� , t� in Eq.
�2� to be constant during the interval t=0−�t for all L� ex-
cept L�=L. We then solve Eq. �2� using Eq. �7� for the single
atom L. This process includes anharmonic effects. In this
case D is only an n�n matrix �n=1–3� and can be easily
diagonalized. The actual choice between using full diagonal-
ization or single atom iterative calculation will depend upon
the specific problem.

In order to bench mark GFMD, we have applied it to
calculate the propagation of a pulse in a one-dimensional
lattice of �2J+1� atoms. The model lattice is shown in
supplementary Fig. 1.9 The interaction potential between at-
oms can be nonlinear. This is a useful model for testing a
new technique because its analytical solution is available in
the harmonic approximation. It is not possible to benchmark
GFMD against MD in more realistic systems because results
over such a wide range of time cannot be obtained by using
conventional MD.

We label the atoms by L where the central atom is L=0
and the end atoms are L=−J and J. The two end atoms are
assumed to be fixed so their displacement is 0 at all times.
We generate the pulse in the lattice by displacing the central
atom by an amount d. We assume that each atom interacts
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FIG. 1. �Color online� Atomic displacement of the central atom
in a one-dimensional lattice as function of time calculated by using
GFMD with �t=100 femtoseconds and compared with the exact
result. The two curves almost overlap. The displacements are nor-
malized with respect to the initial displacement of the central atom.
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with its nearest neighbors only. The displacement of the atom
L at time t in the harmonic approximation is given by

u�L,t� = �d/2J��
ki

cos�kiL�cos�	�ki�t� , �8�

where 	2�k�=2�
 /m��1−cos k�, 
 is the force constant, m
is the atomic mass, k is the wave vector, and i is an integer
varying from −J to J −1. The allowed values of ki are �2i
+1�� /2J.

We solve the same problem by using GFMD. If d is small
enough for the anharmonic effects to be negligible, the
GFMD results should agree with the exact harmonic result.
This should provide a test of accuracy and the convergence
of the GFMD technique. We assume that the atoms interact
through the Morse potential V�x�=−V0�exp�−�x�
−exp�−2�x��, where x is the distance between two atoms and
V0 and � are constants. We express x in units of a0, the
interatomic spacing at equilibrium. We choose �a0=ln 2
which gives x=1 at equilibrium. We choose V0=14.375 eV,
m=12 AU, and a0=1 Å. These values have been chosen so
that the cohesive energy of the model solid is −7.2 eV per
atom, which is equal to that of graphene. The resulting value
of 
, the nearest neighbor harmonic force constant, is 55.25
N/m. We choose d, the initial displacement of the central
atom to be 10−4a0. This value is small enough for the anhar-
monic effects to be negligible to enable a comparison be-
tween the GFMD and the exact harmonic result.

The atomic displacements of the central atom calculated
by using Eq. �7� along with the exact harmonic results are
shown in Fig. 1 for time up to about 10 ms. The displace-
ments are normalized, that is, expressed in units of d. The
two curves almost overlap over the entire scale. The same
results are shown in Fig. 2 for time until about 180 fs and
compared with the results obtained by using the basic MD.
This figure shows that the time scale in the basic MD is
limited to a few femtoseconds in contrast to several micro-
seconds for GFMD.

Further, we illustrate GFMD by applying it to calculate
the propagation of ripples in graphene. In order to bring out
the efficacy of the GFMD technique, we have chosen a par-
ticularly simple but realistic and commonly used model po-
tential, the Tersoff-Brenner �TB� potential.10 In this model
the interatomic interactions extend only up to second neigh-
bors of each atom.11 The X and Y axes are assumed to be in
the plane of the graphene sheet and the Z axis along the
normal to its plane. The origin of the coordinates is assumed
to be at a lattice site. We consider only the atomic displace-
ments in the Z direction to which only the Z components fz,
�fz, and �zz contribute and n=1. Propagation of pulses is an
important characteristic of a material and is useful in under-
standing its elastic response and phonon transport. Such a
calculation for a finite lattice cannot be done analytically
even in the harmonic approximation.

Our model consists of about 1100 carbon atoms located at
the equilibrium graphene lattice sites at t=0. As in Ref. 11,
the outer atoms within the second-neighbor distance of the
outermost vibrating atoms are pegged so that their displace-
ment is zero at all times. The size of the active lattice along
the X axis is about 5.52 nm. Propagation is initiated by im-
posing an initial displacement d in the Z direction on the
central atom. The CPU time for these calculations was only a
few minutes on a standard 3 GHz desktop.

We account for the anharmonic effects in the Z direction
by calculating fz and �zz for each atom at each time step.
These components change at each step due to anharmonicity.
A major approximation in these calculations is that the dis-
placements in the Z direction and in the XY plane are not
coupled. This is strictly valid only in the harmonic approxi-
mation. We, therefore, keep d small so that the coupling
between the ZZ and the planar components of � can be
neglected at all times.

Figure 3 shows the displacement of the central atom and
the atom at a distance of 1.9 nm from the center along the X
axis. The displacements have been normalized with respect
to d=0.01a, where a=1.2563 Å is half the lattice constant
of graphene in the TB model.11 The time taken by the wave
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FIG. 2. �Color online� Same calculations as in Fig. 1 compared
with results obtained by using basic MD for time step �t=1 fs. The
agreement between the two curves becomes increasing worse at
longer times and/or for longer �t.
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FIG. 3. �Color online� Atomic displacements as function of time
in the picoseconds range for the central atom �solid line� and the
atom located at about 1.9 nm along the +X axis �dotted line� in
graphene. The displacements are normalized as in Fig. 1.
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to reach this atom is about 320 fs. This is consistent with the
maximum group velocity of the wave being 5764 m/s as
calculated from the TB model dispersion relation. The boost
in the displacement pattern of the central atom at about 960
fs shows the arrival of the reflected wave. This time is also
consistent with the maximum group velocity of the wave.

An unusual feature of graphene is that the phonon fre-
quency of the acoustic Z modes has a quadratic and not
linear dependence on wave vector in the zero wave-vector
limit. Hence, these waves are dispersive even at the center of
the Brillouin zone. Their velocity is maximum at an interme-
diate point in the zone. A pulse generated at t=0 on a single
atom generates waves of all wavelengths that move with dif-
ferent velocities. The displacement of any atom is the result-
ant of all these waves and the reflected waves. Figure 4
shows the displacement of the central atom in the microsec-
onds range. Figure 5 shows a snapshot of the ripples or the
instantaneous displacements of all atoms in the lattice at
about 20 ms. A movie of the propagation of ripples is avail-
able in Ref. 9.

An important test of the numerical convergence of the
model is the invariance of the total energy of the system at
all times. We have calculated the change in the energy of the
system at each time step and found it to be less than 10−4%.
This shows that the GFMD has extended and bridged the
time scales at least in these calculations by 8 orders of

magnitude—from femtoseconds to microseconds. In the ba-
sic MD the lack of energy conservation results in an increase
in the crystal temperature. This necessitates quenching of
temperature that may introduce errors in the displacements.
This problem does not arise in the present calculations since
the energy is very well conserved. Finally, an additional ad-
vantage of GFMD is that the same formulation can be used
to bridge the length scales by taking the asymptotic limit of
the static part of the Green’s function.12,13

In conclusion, we have presented a possible solution of
the long-standing problem of bridging time scales in atomis-
tic or molecular modeling of nanomaterials by incorporating
causal Green’s function in MD, which significantly acceler-
ates its temporal convergence. The technique is verified by
applying it to calculate pulse propagation in a one-
dimensional lattice of nonlinear oscillators. The technique is
further illustrated by modeling propagation of ripples in
graphene from femtoseconds to microseconds, which is not
possible by using any other available technique. In these cal-
culations the total energy is conserved within 10−4%, which
partially validates GFMD. Thus, in the two model problems
considered in this Rapid Communication, GFMD extends the
time scales by a factor of 108. The technique is general and
should be applicable to modeling of time-dependent pro-
cesses in various physical, chemical, and bio systems in
which MD is used.

The author thanks Stephanie Hooker and David Read for
useful suggestions.
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FIG. 4. �Color online� Same as in Fig. 3 for the central atom in
the microseconds time range.

FIG. 5. �Color online� Snapshot of normalized atomic displace-
ments in graphene at about 20 ms. Coordinates X and Y are in units
of half lattice constant.
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